Numerical approximation of control problems of non-monotone and non-coercive semilinear elliptic equations

نویسندگان

چکیده

Abstract We analyze the numerical approximation of a control problem governed by non-monotone and non-coercive semilinear elliptic equation. The lack monotonicity coercivity is due to presence convection term. First, we study finite element partial differential While can prove existence solution for discrete equation when discretization parameter small enough, uniqueness an open us if nonlinearity not globally Lipschitz. Nevertheless, sequence solutions bounded in $$L^\infty (\varOmega )$$ L ∞ ( Ω ) converging continuous problem. Error estimates these are obtained. Next, discretize Existence optimal controls proved, as well their convergence analysis error quite involved possible non-uniqueness state given control. To overcome this difficulty define appropriate control-to-state mapping neighbourhood strict This allows introduce reduced functional obtain first order optimality conditions estimates. Some experiments included illustrate theoretical results.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non-coercive Linear Elliptic Problems

We study here some linear elliptic partial differential equations (with Dirichlet, Fourier or mixed boundary conditions), to which convection terms (first order perturbations) are added that entail the loss of the classical coercivity property. We prove the existence, uniqueness and regularity results for the solutions to these problems. Mathematics Subject Classification (2000): 35J25.

متن کامل

commuting and non -commuting graphs of finit groups

فرض کنیمg یک گروه غیر آبلی متناهی باشد . گراف جابجایی g که با نماد نمایش داده می شود ،گرافی است ساده با مجموعه رئوس که در آن دو راس با یک یال به هم وصل می شوند اگر و تنها اگر . مکمل گراف جابجایی g راگراف نا جابجایی g می نامیم.و با نماد نشان می دهیم. گرافهای جابجایی و ناجابجایی یک گروه متناهی ،اولین بار توسطاردوش1 مطرح گردید ،ولی در سالهای اخیر به طور مفصل در مورد بحث و بررسی قرار گرفتند . در ،م...

15 صفحه اول

Quasi-concavity for Semilinear Elliptic Equations with Non-monotone and Anisotropic Nonlinearities

An interesting field of modern mathematical research is the study of geometric properties of solutions to elliptic problems. Remarkably, this is often done without any explicit representation of the solution. This paper concentrates on the problem of convexity of level sets for solutions to some elliptic semilinear boundary-value problems in convex rings.More precisely, letΩ0,Ω1 be convex, boun...

متن کامل

Error Estimates for the Numerical Approximation of Dirichlet Boundary Control for Semilinear Elliptic Equations

We study the numerical approximation of boundary optimal control problems governed by semilinear elliptic partial differential equations with pointwise constraints on the control. The control is the trace of the state on the boundary of the domain, which is assumed to be a convex, polygonal, open set in R. Piecewise linear finite elements are used to approximate the control as well as the state...

متن کامل

Error Estimates for the Numerical Approximation of Boundary Semilinear Elliptic Control Problems. Continuous Piecewise Linear Approximations

We discuss error estimates for the numerical analysis of Neumann boundary control problems. We present some known results about piecewise constant approximations of the control and introduce some new results about continuous piecewise linear approximations. We obtain the rates of convergence in i ^ ( r ) . Error estimates in the uniform norm are also obtained. We also discuss the semidiscretiza...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Numerische Mathematik

سال: 2021

ISSN: ['0945-3245', '0029-599X']

DOI: https://doi.org/10.1007/s00211-021-01222-7